Problem - functional oxides

Functional oxides offer unique electronic properties and functionalities to build reconfigurable and adaptable electronic functions beyond CMOS. Please choose the correct properties of MIT switches from the below statements.

- 1. Unipolar switching in functional oxides involves hysteretic 2-terminal devices where using the same sign of the voltage (exclusively positive <u>or</u> negative) one can program a highly conductive or a highly insulating state.
- 2. In switching applications of functional oxide devices <u>one of the key performance</u> factor consists in obtaining a low Ron/Roff ratio.
- 3. The <u>switching speed of MIT devices</u> is typically lower than the one of nanometer scale MOSFET transistor.
- 4. A <u>2-terminal VO₂ resistor</u> can be used to build <u>a spiking oscillator</u> in combination with a FinFET transistor.
- 5. Stochasticity of VO2 switches means that the <u>off-on and on-off switching voltages</u> <u>are not fully identical</u> and have a distribution that can be interpreted and modeled as an electrical probabilistic noise.
- 6. A gating with a negative capacitance ferroelectric gating could, in principle, <u>help to increase the electric field at surface of a 3-terminal gated MIT switch</u> and therefore reduce the switching voltage.
- 7. One can decrease the transition temperature of VO_2 material by doping with chromium (Cr).
- 9. 2-terminal (with no gating) MIT switches can be used <u>as pressure sensors</u> of various inert gases.
- 10. At room temperature (300K), the subthreshold swing of a 2-terminal VO2 switch is higher than 60mV/decade.

Comments	